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r
1. m t  r~ duct ion

This paper presents a bounding te~ hnIque or use In Implicit enumeration

algorlthma t~~r solving ttw Integer linear programalng problem with binary

variables. This problem may be stated as foi1,’v~ .

n
maximize • ~-

1.1 ‘

subjec t t o

n

~ 
< b

1
, (I • 1 ,2,... ,m)

j.1

— 0 or I , (j • 1.2,... ,n).

The main assuaptic’n.. used by this ~echn 1qu e are (1) the linear programaing

relax ation of (F).
U

ma x imize — c x
1— 1

subject to

U

: b~ . (I — 1 a)
i— i I

0 C < 1. (1 — 1,2,... ,n)

possessc~ a uni ,ue optima l solution, (.‘) the optimal solution to 
~~~ 

is not

binar y , and (3) ~i good feasible solution to (P) is available . If (2) does not

hold then the optimal solution to 
~~~ 

is also the optima l solution to (P)

and the algorithm w”uld not be required . Assumption (3) may be met by

using ‘n~’ of the many hcurt st i procedure s in the literature 11 ,4,6,71. An

alternativ , to w’~~pt 1-n (3) requlr4’4 tha t a lover bound on the optimal

object ive function value o~ a related problem (P’), defined In Section 3. be

ava i lable.

In what fo l low, we show that “joint ” bourida can be obtained on the values

of a subset of the variables by adapting the approach used by the Bound—and—Scan

algorithm I 3 J In which the variables are restr i. t ,d to be non—negative integ ers

rathe r th~n binary. In add i t i on  we give good indications tha t these bounds may



- -~~

* 4 . . ’~1 ~ i t  is. t ent 1 . P i : t . s  I l~ . .s i’ l.o~. ..t p rob lem s part 1~ ular ly wc1l—s t~i t

to (hi  ..sun.i i ng ~ r ~s ., ~ do is’ i ~ spes I lcd .

( 0th s f t  U.I L Out_i i u e  of Ii. Bound . .~~~ ,~~~l : i
5 i

Thi . t .- ’ i~~~us ’ is ~~~t t v s t . - ~: by th e to 1Lowiu~: ‘onsi de ra t n~ .. In an

enumvrati.’n a lgor ithm the goal is to gut . ..iv el iminat e larg e ~.iihs~~~~~

of th e 2~
’ pos.ibh co.binat i n s  of va l ues to :  t P e vii r~ .ih1 t .  by v a r io45 I .  Is.

~L~v I ~ ~ bound on t hs oh c. t I ye I unc ion v., I ..• h. o~.t i ma! .. I’ * on pr vi de..

h t~•st sin .’ const:..tntng ~v.s’.thle point, t o  yield a h tt .r ~ ~. t i ve f unc t i

va iut great lv  dec : .’~~~’. th”  si:, oi the t. .s..ibl.~ region . Also , th i. new eon—

si r .slnt assures tha t m y  llt ~~ i eas ib ie solut ion w i l l  h r ..i~.i the ii’s o4 I ~w

f t ~ as lb is’ region even or . )iore ’vi  r • if we can ~~~ t .. n a i. ;
~ 
r.~ .s•n I .1 t fl ‘1 .‘

group ot .‘.,rl~ b l ,~s ~~ l.it (1) * l i ..w’ . us t,o ix the va~~ . ot some of tIn’ variable s

in mn opt i ..sl solution t (F) and t.~ yields “joint ” • .snds on Un’m ~‘hich * l1o~i

‘ C  (~~~.4t Ic ~t n.• r .t ton of i l l  relevant coeblnat ~ons of Clir ; T v 4 ~ l js’~. , vs w i l l  t~.,vs

s’ Li minmt * ’ t  even ~~ re ‘i t ’ w romb~~ .st ions . Further . 11 the number of

vat ta b t . ’ . In thi~. grou p i,s large as .i tunc t Ion ‘I  n ~~~~ we use . “ )oi nt ’ hounds

in ~ . ops m ( at  tona lly rssg.i l way . addi i. ’n.~l time saving s wi l l  i. ~ h iev ed as a

resu1~ of having only ;i small ‘~~p~~N # y  of v ., r iab lcs r dea l w i th  in another manner.

[he t i ’  !mni q:m. prc’o~nt . - d  ~.‘ r s ’  seeks t o  take advantag e of these 1J,’a’ .

n~~m,i ,.r the region Iet,’ r ~~ineJ by t he onst r . i in t ’ . that ar ,  binding ’ in the

optimal solution t o  
~~~~ 

. , tt t ~r making a change of var iables (x  • 1—x
1
) for

• 
~~~ Si vari.~~i.. ’.. *~~, ~~~°‘s  complements , (1 — x ,

~
). were nonb asic In th is  solution

(5.  pp. ~~~~~~~~~ In add i t i o n , requ i re tha t t he value of the o b j e c t i v e  l unctio n 4

1 Here we .xludv constraints tha t are bind ing due I. ’ degeneracy. Hence , th u

binding ‘ onstraints i rs  t hose cons t ra in t s  
~ 

a
11

x
1 

< b
1 (I • l ,2 , . .. . m) whose

s i n k . m r i a b l e s  ar. nonbasic in the opt imal solut ion to (P
s ). and those non-

n. .:. it lvtty con straint s that sorrespond , a f t e r  the change of variables, to nonb as ic

variabl es in th is so l u t i o n .

_ _ _ _ _ _ _ _  ___ ---— __ -- _— .-
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not be less than the bound generated by tie known feasible solution

to (F). The optimal solution to (F) c learh lies in this region.

Identify the extreme points of thi, region , and represent eath feasible point

(as defined by thi, region) as a convex combination of th.s, extreme points;

then us~ the remaining constraint s to perhaps eliminate some of these convex

c ombinations t ron further onsideret ton . This prov ides a convenient way of

tdentit~~ing the relevant combinations of values for the variables that were

nonbasic , at least a l ter the cha nge of variab les , in the op t imal solut ion to

E.i~ h time a relevant set of vajui 1~ determined we exit fm. this

technique to th. underlying algorithm to see I f  this part ial set of values for

the *1 
can yield a completion which satisfies ~ll the constraints of (F). If we

find such a t eaaible solution it yields .* new lower bound on the optimal objective

function value of (P). We then seek to ident ify another relevant set of values

for this samu~ group of variables. Hence, an iteration corresponds to a relevant

set of va l %.,.s for these variables and the algorithm term inates when all such

sets have been considered .

3. Notation and Initialization

This section introduces the notation and terminology that viii be used in

what follows. An alternative representation of (F) is

maximize z~ • C x

subject to

A x ’ b

*1 
— 0 or 1, (j • 1 n)

where ~ is a 1 x n vector , z is an n x I vector , I~ is an a x 1 vector

and A is an a x n matrix. An n x I vector x is a feasible solution

J
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

to (F) If it is In the region defined by the constraints; It is an optimal

- —~~- -~ - - - -  ~ I
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. l utlon it it is f asible and maximl:es the .h)~~s t t v r  f unction value among

4 11 feas ib le  •olutions . The value . 1  for us optimal solut ion wi ll be

. ..l led the opt t ..ia l objective funct ion v4iue . If values have been 4ss igned  to

only certain ot the variables (coaponents ot x), this specification t values

wil l  t i  c .i l led ,m partial soLution ts ’ r these variables. Given a partial solution ,

• a completion’ is a solution resulting f rom specit1~ ation of va l ue s for the

remaining variables. An eligible parti al solution is one that doe . not violate

.me ’. known bounds on the variables involved . i.e.. one that , based on our present

information , cou ld yield a completion tha t is an optimal solution .

~~~~ ‘ o;~~j m~l soLution t o  (P
s
) may he Ins l uded in the card input stress or

(P a
) may be solved during i n i t i m l ~~;.st ion it the underlying algor ithm is simp lex-

* * ~~1based. In t i t h e r  case , we w i l l  t. ’ :m t ,  this so lution as x • (x l x l  and

i~~~s objective function value as x
~ 

- x .  Al so we uh’ t ine

— t j x
1 

is basic).

— (j~~x • 0 and X
j  

i~ nonbasic).

• • 1 and 1 — x~ is nonbasic).

i s • JO ~
• . (i ....,a~ and t In ith constraint is binding at

(1 n — KB.

We wish to make the following change a’ variable s t. define x ’ for

0
any

, j 1—x~~, if j E I
l

otherwise.

This change of variables direct lv induces the problem

maximize x~ •

subject to

(F ’) A x ’ b’

• 0 or 1
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from (F). Note that an optimal solut ion to (F’), ~
.oPt 

yields an optimal

solution , )1OPt to (F) via

jf j € J
1opt

othe rwise

Henceforth we will direc t our attention to solving (F’).

For notational convenience it will be assumed that the original indexing

of the X
j  

and b~ was such that it n
5 ~~~~ 

thn

~ B
.

. (n.~+1,... ,n~ ,

- (n
3+l ,. . . aL

Finally denote the initial good feasible solution to (F) by
F F T  , (F)(x

i x J  . Now define x by

, (F) 1 - ~~
(F) 

~ j €

1 
~~~~~ otherwise,

and let x~(~ ) - c ’z’~~~ . Note that ~~~~ is a lower bound on the optimal

objective function va lue of (F ’) .

4. Techniqu, for Bounding ~x~ Ij E

Define the n * n matrix A* whose ith row Is

A ’, i — l ,...,n
* 

I

i •

where is the unit n-vector with unity assigned to component I. Also define

* Ei~ whose ith component is

—-——------ • —~-~~ .. “----— • ---- --—-. • , .  - _____  .- -- - ~ - - -



b . I • ~~~~~~~~~

b -
I t • n

8
+1 , n.

So.. consider the -.. t  of p oin ts M .,t i s t y l n g

~ i )  A5 x <

(F)
( i i)

~ iu.. e  ( t )  ~~~~~~~~~~ se t . t  c onst r .s m t s  h.*t .,re binding on x ’ * (induced by

I .~ 
‘~~. h.in~~e of variables) .in i (F) is a lowe r oun i on the opt imal

ive tun.  t ion value of (F) , anY optimal solution to (F’) must be in this

.tt~t .  If (c ’x ’ — c ’ X ’~~~
> ) is gaall,th is  set  will contain few binary points

and ~ c se. irch for an ~~;-‘ t t n~s~ binary ;~~-. t n  may n t  t~e di t icu lt

We now seek t . . t ind the n• extre me p o i n t s  of t h e  ‘.t m p le defined by

(. 1)  and (ii). ~~~~~ 
( l i s t  n ext rene’ points are determined by the syste m of

equatton’~.

A~
1) t I )  

— . (I — 1 

where A
(i) is obtained by replacin~: row i . 1  A t.v C ’ , and is the

, IF)
vector obtained by repi. i  lug component I ‘ 1 l by . The (n4l)

extreme point Is ~(O) * x ’ (3 , p. ~~~~~~~~ It .in be shown tha t A~
’
~ is

n l ~~~~s i~~r ( I  • i .....n) (3 .  p. 646 3 and , hence, we have exp l i c i t  l v

- (A~ 
l t Y~ 

~~~~~~~~~ 
~~~ 

-

We wish t represent the feasible points as convex combinations of these

extreme p o i n ts . To this end define

(0) 
X~~

’
~ . ..

N
Li  1 ... l

and

1
• 

..

..—‘- - ———- •--• — . -~
.• - • o...•_-
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Then setting

fx

yields such a representation for x via P. z is in the simplex determined

by Ci) and (ii) If and only if ~i 0. For an arbitrary x , ~ exists by virtue

of the fact tha t H I. nonsingular (1 , pp. 648,649J, so

- i rx

provides the relevant vector i~.

Fortunately, this ro pr e s e i i t. i t  ion can be obtained directly without explicitly

performing a matrix inversion , since A 1 
x~~~~• b~ for j # i (by definition

of A t’’ and ~~~~~ i — 1,... ,f l ) ,  so

* * a * (j )
b - A  x • b - _-\ x
I I - I j  I

* * • (i)
• b

1 
— (1 — . 1

)b~ 
— 01

A 1 x

* * (i)
• p

1
(b 1 

— A x

Therefore ,

* *
- A

1 x
1 — 1  nt

j  * * •

b1 
-

and , similarly,
(~~

)

—
, (O) ,(F)c x

Solving (P’) has now been reduced t o  finding those x with ~ 0 which

sa t i s f y  the constraints of (F’) that are not binding on x~~ and identifying

the one which maximize s C ’s.

it can be shown that each element of - ‘
~ 

~~~ has the property that it

has va lue zero at all of the extreme points of our n-simplex except one , where

Li — ~—-— 
—--.-- -~ -----—-— - -- ---~~ - - - - - - - — — -——- --- -~~- -- - _ _____________________________
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it iu~- .~ str ictly p o s i t i V e  va l ue. In particular . ) 0 (or C d t  j L

This ts .llow s from Le~~a 3 (3 , p. 64 6 ) .  which for completeness is restated here.

Le~~a: Under the assumptions 0? ~ i-~~ii .’ is  1 , (1 — O,...,n) satisfies con—

* (I) *
strain ts (I) and (ii). Furthe rmore . x ‘- b1 

(or I • I ,... ,n and

~.~~
(O) 

.

Hence, t o t  j  E .t , 
*

- ( 1)

This result , combined with the t .~~ t that p
0 

increases as the best known

objective function value of (P’) increases , y ields the following t heorem

(3, p . 6~~~J.

Theori’~~: A necessary .ondit Ion for (x ,. . .,x 3 1 to  be an eligible partial
n

solution to (F ’) (or the variables whose Indic ss are in is that

~‘ 
~ j _ _ < 1  

BI (j) — ‘0 ’
, f l g+l *j

where ~~~~~~ is the  value of ‘0 
t o t  the current best feasible solution to

• 
~~l ’

~~ 
.,x

8
J
1 (with objective function value x0~).

This leads i ediately to the following corollary .

Corollary: If I where j € J~ . then xj  • 0 in any optimal solution

to (F’).

Proof : I implies that l/x~~
1
~ > 1, since ~~~~ 

) 0. Hence , > 1

when - 1 and this partial solution for X
j 

is not eligible.

Thus we may set *1 
0 for those J where ~~~~ < ~~. For notational

convenience let this occur for j  - n~ + 1,.. .,n0, and our necessary condition

is now reduc ed to

—

~

—--- - -

~ 

—~~~~~~~~~—-—----—- ---—— —~~~~~ ---  ~—-- -~~~~ - -
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a *¶• j
L (j )

J n 0
+l X

j

Thus, by calculating for  .1 — n0+l,. ..,n once at the oUtset and

updating 
~~~~ 

whenever a new feasible solution to (P’) is found , a single

add ition and comparison are needed to check whether a current partial solution

tot these variabl es remains eligible it a particular value is Increased from ~e r ’

to one. Hence , it is simple to generate all the eligible partial solutions one

-it a t ime , stopping each t ime to explore its completions using the underlying

a 1 got I t ha.

A possible enumeration scheme is initia ted by starting at x ,... ,~~ 
)
~ 

•
a —

Each subsequent partial solution is obtained by first searching th~ set 

x ) for the first zero value , x • and then setting x • x —
n
0
•l n q n0

+l 
~o

’2
Xq_ l • 0 and x - 1 and checking the necessary condition for eligibil ity . If

this new p.~rtial solution is not elig ibl e , again search for the first zero value ,

* , and set * + ~~

- ... a x 
-l 

— 0 and x • 1 and check for eligibility, etc .
p no p p

When there does not exist a zero—value d variable in (x ,. ..,x J the
n
0
+l n

eligible p .irtial solutions have been exhausted and the algoritha terminates.

S. ç~~p~ tat ion.al Considerations

The bounding technique presented in the preceding section has not yet been

tested for computational efficiency. However , we discuss b low some indications

that it will be efficient , and then consider which kinds of problems can best

take advantage of it.

It wa s mentioned in Section 4 that a small value of (c’x’ — ~‘~ ‘~
T’ ) Is

a key to the efficienc y of the technique . Severa l heuristic procedures for

obta ining have been tested and shown to giv, good results (93, so a

relatively small value of the above seems to be a reasonabl, expectation. Such

_ _  - - - -
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a value ~~~~ tends to yield rel~ t ive1y small values for the ~~~~~~ which

~i~~~tly red uces the number of parti al solutions that .ir. e li g ib l e . For example ,

i t 1 ~ ~~~~ 
( 2 f o r  .~1l j  • n

0 
+ 1 ,... ,n, th en the number of eligible part ial

solutions grovs only linearly with (n - n~y. whereas this number could grow
e-.sentL3l lV exponentiall y It the are sufficiently large .

______ .-~~~~~~~~~~~~~~~~ — -~~~~~~~~~ - -



In Identifying th. extrem. point . g
(l) 

it is not r .aliy

necessary to f ind the (A~
t
~~)
” or even to construct the (or . in fac t ,

As) in a simplex-based code . Beginning with the inverse of th. final basis

ma trix for tP~) (recalling that the change of variables does not at t .c t  th. basic

columos of A ) ,tb. extreme point s may be computed by performing a succession of

pivots. First append the constraint c ’x ’ ~ to (P
1
’) (induced by (P

s
)

via the change ci variables), Introducing its slack variable as the additiona l

basic variable in the optimal solution . Now successively Introduc e each nonbas ic

varlab it (*j 
: j  ‘— J

$) into the basis while r~~~ving the variable that was

introd uced into the preceding basi s. The first a components of the resulting

n “ is ic solutions ar. the desired extreme points.

An cx;’licI: representation for the ha. already been given , obv i.’it ing

the n.’ed for finding or even constructing H.

Hence, thought the theory involved in arriving at this approach is rathe r

involved . th . only additional storage (beyond that of iii. underlying algorith m )

(I — 0.... ,n), 
~~~~~ 

l I x
1~~~ Cj- .n 0+l , . . . ,n) ,  n~. and a vector indicating

w uch j arc in J
1
. Th. latter is needed to dea l with th. required change of

variables . The added computation involves the change of variables , the addition

of the constraint c ’x ’ x~~
’
~ to (P s ’) .  n pivots to find ~~~~~~~~~~ . .

t~~ c computation 01 ~~~~~~~~~~~~~~~~~~ . .,n) and then one addition and comparison

‘or each partial solution in the enumeration scheme delineated in the prev i ous

cc r 
~ Ion .

Th•se mod.st computationa l and storage requirements suggest that we should

usually be able to efficiently inves tigate a relatively large ni~~ er of var iables

with this bounding technique . In fact , a simi lar tec hnique embedded in Hillier ’s

Bound-and -Scan algorithm for the general inte ger linear progra lng problem has

proven to be quit. efficient under computationa l testing (31.
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~~ know tha t the numbe r of  .~~ iab1es that are not handle i by this

t c~hni .~uc . is bounded above by m, th e number ot f unc t ion.al c o n . t r . i i n t s. This

resul t tollows f rom Wetngartner’s pri ’.’t that .~t ~~.t a of the original variabl es

can be basic in a solution t o  (1’) 18, pp. ~~— I 7 3 . Ttc cs ore, tt,, - bound ing technique

seems particul a rl y promi sing to r problems whert a is small, ~ t ;~~ e relativel y

tew variables would then need to be handled by t~~ie under lying al~. - rtthm .

In su~~~ ry . in ~ simp its-based Imp li cit enumerat ion procedure to solve (P),

t ~ use of t his hounding t e  - hni quc for problems ~ ic , r i  t ii. number of onst taints

~~
- . cmj ll t o  comparison to  the numbe r ot variabl e . si~~-~~~. very promising computa—

tiona lly. ‘t w il l be imp lemented an t te sted i n  the near tit u r e and the result.

r.po.z.d.
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A Bound i ng I e~ hn t qui~ 1.1 Integer linear l’i ogra~~~ing

with binary V .i , i.itl.-~.

by

Frederi K S. ‘~~ll~ i- r and ‘.rn E. ‘ s

Departrment ‘ t  Operat Ions r 1 - .c.s T
-‘t .~u!~~rd C n t v e r s i c v

We presen t a bounding tec hnique t i r  ~~~. in im p l itit enumeration algorithms
C

(or solving the intege r linea r programeing problem with binar y variables. The

main T’s~~uT- ; ’ t  ~‘ n ~ used by t h t i  technique are 41) the associated linea r program ,

‘bt.s i ;w ’. by Jr ig t he integral . con’~t t i  rnt . on the variables , ‘s~~t~~~’~e,. a

unique opt ima l solution . (f l  this optima l ,.oiut Ion is n ,t  binary, and (‘~)a good

~~~~~~~ ‘.~ . i t  ion to  . ‘rigina l problem iii available. An altern at lye to

a - ~ asss.~ p t i on i ~ ~h I • ft is weaker i ~ il i~~ ’ ; ii’ ..r t t  ed.

~~i show tha t 1’int~
’ bounds can he ‘ t ’ t a i n e d  on the values of a subset of

the var tahI. ’~ . In - s J I ~~ , we g ive an •‘~~ i -~~‘nt met hod t o implement this

• bounding technique . Finally, a ci.1 ”~ “I problems U.~rt 1~~u 1.irI v well-suited to

this bounding procedure is specified .
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